Sunday, November 10, 2019


How can we test a Theory of Everything?
Sabine Hossenfelder
[[Extremely clear and informative.]]
That’s a question I get a lot in my public lectures. In the past decade, physicists have put forward some speculations that cannot be experimentally ruled out, ever, because you can always move predictions to energies higher than what we have tested so far. Supersymmetry is an example of a theory that is untestable in this particular way. After I explain this, I am frequently asked if it is possible to test a theory of everything, or whether such theories are just entirely unscientific.

It’s a good question. But before we get to the answer, I have tell you exactly what physicists mean by “theory of everything”, so we’re on the same page. For all we currently know the world is held together by four fundamental forces. That’s the electromagnetic force, the strong and the weak nuclear force, and gravity. All other forces, like for example Van-der-Waals forces that hold together molecules or muscle forces derive from those four fundamental forces.

The electromagnetic force and the strong and the weak nuclear force are combined in the standard model of particle physics. These forces have in common that they have quantum properties. But the gravitational force stands apart from the three other forces because it does not have quantum properties. That’s a problem, as I have explained in an earlier video. A theory that solves the problem of the missing quantum behavior of gravity is called “quantum gravity”. That’s not the same as a theory of everything.

If you combine the three forces in the standard model to only one force from which you can derive the standard model, that is called a “Grand Unified Theory” or GUT for short. That’s not a theory of everything either.

If you have a theory from which you can derive gravity and the three forces of the standard model, that’s called a “Theory of Everything” or TOE for short. So, a theory of everything is both a theory of quantum gravity and a grand unified theory.

The name is somewhat misleading. Such a theory of everything would of course *not explain everything. That’s because for most purposes it would be entirely impractical to use it. It would be impractical for the same reason it’s impractical to use the standard model to explain chemical reactions, not to mention human behavior. The description of large objects in terms of their fundamental constituents does not actually give us much insight into what the large objects do. A theory of everything, therefore, may explain everything in principle, but still not do so in practice.

The other problem with the name “theory of everything” is that we will never know that not at some point in the future we will discover something that the theory does not explain. Maybe there is indeed a fifth fundamental force? Who knows.

So, what physicists call a theory of everything should really be called “a theory of everything we know so far, at least in principle.”

The best known example of a theory of everything is string theory. There are a few other approaches. Alain Connes, for example, has an approach based on non-commutative geometry. Asymptotically safe gravity may include a grand unification and therefore counts as a theory of everything. Though, for reasons I don’t quite understand, physicists do not normally discuss asymptotically safe gravity as a candidate for a theory of everything. If you know why, please leave a comment.

These are the large programs. Then there are a few small programs, like Garrett Lisi’s E8 theory, or Xiao-Gang Wen’s idea that the world is really made of qbits, or Felix Finster’s causal fermion systems.

So, are these theories testable?

Yes, they are testable. The reason is that any theory which solves the problem with quantum gravity must make predictions that deviate from general relativity. And those predictions, this is really important, cannot be arbitrarily moved to higher and higher energies. We know that because combining general relativity with the standard model, without quantizing gravity, just stops working near an energy known as the Planck energy.

These approaches to a theory of everything normally also make other predictions. For example they often come with a story about what happened in the early universe, which can have consequences that are still observable today. In some cases they result in subtle symmetry violations that can be measurable in particle physics experiments. The details about this differ from one theory to the next.

But what you really wanted to know, I guess, is whether these tests are practically possible any time soon? I do think it is realistically possible that we will be able to see these deviations from general relativity in the next 50 years or so. About the other tests that rely on models for the early universe or symmetry violations, I’m not so sure, because for these it is again possible to move the predictions and then claim that we need bigger and better experiments to see them.

Is there any good reason to think that such a theory of everything is correct in the first place? No. There is good reason to think that we need a theory of quantum gravity, because without that the current theories are just inconsistent. But there is no reason to think that the forces of the standard model have to be unified, or that all the forces ultimately derive from one common explanation. It would be nice, but maybe that’s just not how the universe works.