Neuroscientists Say They've Found an Entirely New Form of
Neural Communication
[[Just when some people think that everything is understood - sigh!]]
Scientists think they've identified a previously unknown
form of neural communication that self-propagates across brain tissue, and can
leap wirelessly from neurons in one section of brain tissue to another – even
if they've been surgically severed.
The discovery offers some radical new insights about the way
neurons might be talking to one another, via a mysterious process unrelated to
conventionally understood mechanisms, such as synaptic
transmission, axonal transport, and gap junction
connections.
"We don't know yet the 'So what?' part of this
discovery entirely," says neural and biomedical engineer Dominique Durand
from Case Western Reserve University.
"But we do know that this seems to be an entirely new
form of communication in the brain, so we are very excited about this."
Before this, scientists already knew there was more to
neural communication than the above-mentioned connections that have been
studied in detail, such as synaptic transmission.
For example, researchers have been aware for decades that
the brain exhibits slow waves of neural oscillations whose purpose we don't
understand, but which appear in the cortex and hippocampus when we sleep, and
so are hypothesised to play a part in memory consolidation.
"The functional relevance of this input‐ and output‐decoupled
slow network rhythm remains a mystery," explains neuroscientist Clayton
Dickinson from the University of Alberta, who wasn't involved in the new
research but has discussed it in a perspective article.
"But [it's] one that will probably be solved by an
elucidation of both the cellular and the inter‐cellular mechanisms giving rise
to it in the first place."
To that end, Durand and his team investigated slow periodic
activity in vitro, studying the brain waves in hippocampal slices
extracted from decapitated mice.
What they found was that slow periodic activity can generate
electric fields which in turn activate neighbouring cells, constituting a form
of neural communication without chemical synaptic transmission or gap
junctions.
"We've known about these waves for a long time, but no
one knows their exact function and no one believed they could spontaneously
propagate," Durand says.
"I've been studying the hippocampus, itself just one
small part of the brain, for 40 years and it keeps surprising me." [[My emphasis.]]
This neural activity can actually be modulated -
strengthened or blocked - by applying weak electrical fields and could be an
analogue form of another cell communication method, called ephaptic
coupling.
The team's most radical finding was that these electrical
fields can activate neurons through a complete gap in severed brain tissue,
when the two pieces remain in close physical proximity.
"To ensure that the slice was completely cut, the two
pieces of tissue were separated and then rejoined while a clear gap was
observed under the surgical microscope," the authors explain in their paper.
"The slow hippocampal periodic activity could indeed
generate an event on the other side of a complete cut through the whole
slice."
If you think that sounds freaky, you're not the only one.
The review committee at The Journal of Physiology – in which the
research has been published – insisted the experiments be completed again
before agreeing to print the study.
Durand et al. dutifully complied, but sound pretty
understanding of the cautiousness, all things considered, given the
unprecedented weirdness of the observation they're reporting.
"It was a jaw-dropping moment," Durand says, "for us and for every scientist we told
about this so far."
"But every experiment we've done since to test it has
confirmed it so far."
It'll take a lot more research to figure out if this bizarre
form of neural communication is taking place in human brains – let alone
decoding what exact function it performs – but for now, we've got new science
that's shocking in all kinds of ways, as Dickson adroitly observes.
"While it remains to be seen if the [findings] are
relevant to spontaneous slow rhythms that occur in both cortical and
hippocampal tissue in situ during sleep and sleep‐like states," Dickson writes, "they should probably (and quite
literally) electrify the field."
The findings are reported in The Journal of
Physiology.